On the precoder design of a wireless energy harvesting node in linear vector gaussian channels with arbitrary input distribution


Por: Gregori, M, Payaro, M

Publicada: 1 ene 2013
Categoría: Electrical and electronic engineering

Resumen:
A Wireless Energy Harvesting Node (WEHN) operating in linear vector Gaussian channels with arbitrarily distributed input symbols is considered in this paper. The precoding strategy that maximizes the mutual information along N independent channel accesses is studied under non-causal knowledge of the channel state and harvested energy (commonly known as offline approach). It is shown that, at each channel use, the left singular vectors of the precoder are equal to the eigenvectors of the Gram channel matrix. Additionally, an expression that relates the optimal singular values of the precoder with the energy harvesting profile through the Minimum Mean-Square Error (MMSE)} matrix is obtained. Then, the specific situation in which the right singular vectors of the precoder are set to the identity matrix is considered. In this scenario, the optimal offline power allocation, named Mercury Water-Flowing, is derived and an intuitive graphical representation is presented. Two optimal offline algorithms to compute the Mercury Water-Flowing solution are proposed and an exhaustive study of their computational complexity is performed. Moreover, an online algorithm is designed, which only uses causal knowledge of the harvested energy and channel state. Finally, the achieved mutual information is evaluated through simulation. © 2013 IEEE.

Filiaciones:
Gregori, M:
 CTTC, Barcelona 08860, Spain

Payaro, M:
 CTTC, Barcelona 08860, Spain
ISSN: 00906778
Editorial
Institute of Electrical and Electronics Engineers Inc., 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA, Estados Unidos America
Tipo de documento: Article
Volumen: 61 Número: 5
Páginas: 1868-1879
WOS Id: 000319752600022
imagen Green Submitted, All Open Access; Green Open Access

MÉTRICAS